	REPORT D	OCUMENTAT	TION PAGE		Form Approve	
Public reporting burden i maintaining the data nee	for this collection of information	is estimated to average 1 hour p	per response, including the time f	or reviewing instructions	OMB No. 0704-0 searching existing data sources, gath	oring and
Highway, Suite 1204 Ari	or reducing this burden to Depar	rtment of Defense, Washington H	leadquarters Services, Directoral	e for Information Operati	other aspect of this collection of informions and Reports (0704-0188), 1215	antion
1. REPORT DATE	If it does not display a currently	y valid OMB control number. PLE	otwithstanding any other provision EASE DO NOT RETURN YOUR	n of law, no person shall FORM TO THE ABOVE	ions and Reports (0704-0188), 1215 Je be subject to any penalty for failing to ADDRESS.	comply with a
". NEFORT DATE	: (DD-WW-YYYY)	2. REPORT TYPE Technical Papers			3. DATES COVERED (Fron	n - To)
4. TITLE AND SUI	BTITLE	Technical Fapers			Fo CONTRACTALIST	
					5a. CONTRACT NUMBER	
				Ţ	5b. GRANT NUMBER	
				į		
					5c. PROGRAM ELEMENT	NUMBER
6. AUTHOR(S)					5d. PROJECT NUMBER	
				-	3058 5e. TASK NUMBER	
					RF9A	
					5f. WORK UNIT NUMBER	
7. PERFORMING	ORGANIZATION NAM	E(S) AND ADDRESS(ES	2)			
			?)		8. PERFORMING ORGANIZ REPORT	ATION
Air Force Resear	ch Laboratory (AFM	IC)			···E· VIII	
AFRL/PRS 5 Pollux Drive						
Edwards AFB CA	A 03524 7040			ļ		
Edwards At B CA	3 93324-7048					
9. SPONSORING /	MONITORING AGENC	CY NAME(S) AND ADDE)=CC(EC)			
		AND ADDE	1E33(E3)		10. SPONSOR/MONITOR'S ACRONYM(S)	
Air Force Danson	ala I al control	. ~		1	AONON I M(S)	
AFRL/PRS	ch Laboratory (AFM	.C)				
5 Pollux Drive					11. SPONSOR/MONITOR'S	
Edwards AFB CA	¥ 93524-7048				NUMBER(S)	
12. DISTRIBUTION	/ AVAILABILITY STA	TEMENT				
	, AVAICABILITY STA	I CIMEIA I				
3 16						
Approved for pub	olic release; distributi	on unlimited.				
3. SUPPLEMENTA	ADV NOTEO					
J. SOFFEENIENTA	ART NOIES	•				
14. ABSTRACT	· · · · · · · · · · · · · · · · · · ·					
		•				į
			^	00704	A	
			/	10507	23 037	
			_ \	וטכטע	1CD C7	ľ
						1
5. SUBJECT TERM	is					
						ļ
6. SECURITY CLAS	SIFICATION OF:		17. LIMITATION	40 400		
			OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPON PERSON	SIBLE
REPORT	The ADOTT AGE			- AGES	Leilani Richardson	
HEFUNI	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUME	BER
nclassified	Unclassified	Unclassified	(A)		(include area code) (661) 275-5015	
				_L	(001) 2/3-3013	

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

21 separate items enclosed

MEMORANDUM FOR PR (In-House Publication)

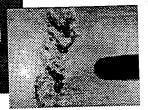
FROM: PROI (TI) (STINFO)

30 November 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: **AFRL-PR-ED-TP-1999-0226**Talley, D., "Basic Research in Supercritical Combusion" (BFI)

49th JANNAF Propulsion Meeting (Tucson, AZ, 14-16 Dec 1999)

(Statement A)



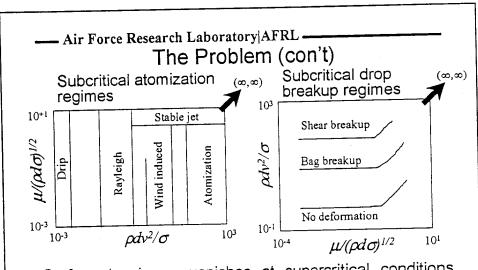
BRIEFING FOR INDUSTRY 16 Dec 1999

Basic Research in Supercritical Combustion

Doug Talley
Air Force Research Laboratory|AFRL
AFRL/PRSA, 10 E. Saturn Blvd.
Edwards AFB, CA 93524-7660
(805)275-6174
Douglas.Talley@ple.af.mil

- Air Force Research Laboratory|AFRL -

6.1 Objectives


 Determine the mechanisms which control the breakup, transport, mixing, and combustion of suband super-critical droplets, jets, and sprays.

6.1 Funding (\$1,000's) Prior FY99 FY00 FY01 141 141

__ Air Force Research Laboratory|AFRL -

The Problem

- It is often advantageous to operate combustion chambers at pressures exceeding the critical pressure of one or both propellants.
 - Higher chamber pressures lead to greater performance (Isp).
- At supercritical pressures, the distinct difference between gas and liquid phases disappears.
 - Conventional "spray combustion" experience no longer applies.
- It is not known how to replace conventional "spray combustion" models in engine design codes.
 - The lack of understanding leads to potentially large engine design errors.

Surface tension σ vanishes at supercritical conditions. Conventional atomization and breakup parameters become *infinite*, where no data exists.

Supercritical atomization and breakup regimes are unknown.

__ Air Force Research Laboratory|AFRL .

The Problem (con't)

- Supercritical combustion is complicated by several factors not present in subcritical combustion:
 - Vanishing surface tension.
 - Equivalent gas and liquid phase densities.
 - Strongly enhanced gas / liquid solubility.
 - Different reaction kinetics.
 - Mixing induced critical point variations.
 - Property computation / singular behavior.
 - Zero enthalpy of vaporization.
 - Infinite specific heat (Cp).
 - Infinite compressibility.
- Deeply fundamental questions such as whether droplets can even exist were hotly debated when this work began.

___ Air Force Research Laboratory|AFRL -

Technical Approach

- Windowed pressure vessel operating at supercritical pressures.
- Cryogenic fluid capability (LOX, LN2)
- Capability to produce supercritical droplets and jets.
- Shadowgraph, Schlieren, and Raman visualization of concentration fields.
- Capability to drive flows with an acoustic driver

— Air Force Research Laboratory|AFRL -

Payoffs

Provide alternatives to trial and error development

- <u>Performance</u>: Injector related design uncertainties translate to 3-6 sec lsp on a booster class LOX/H2 engine.
 - Comparison: IHPRPT 2010 lsp objective is 13.5 sec.
 - 3-6 sec Isp buys 1.6 3.3 <u>tons</u> payload on the Space Shuttle Main Engine (SSME) worth \$20-40M <u>per launch.</u>
- Operability and Lifetime: Injector related performance deficit required SSME turbopumps to be run at 105% rated power, increasing pump stress.
 - Pumps are the most expensive SSME maintenance item.
 - Turb. blade cracking problem is also probably inj. related.
- <u>Instability</u>: Injector related Saturn F-1 instability problem required over 800 full scale tests to solve.
 - Present day costs: over \$750K per test. Total: \$600 million.

<u>Trial-and-error approaches risk significant cost overruns</u> that can no longer be afforded

— Air Force Research Laboratory|AFRL -

FY99 Accomplishments

For subcritical and supercritical mixing layers:

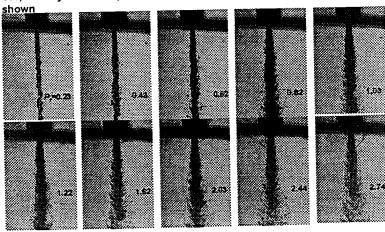
- Measured the growth rate for a wide variety of propellant combinations
- Developed comprehensive model to predict mixing layer growth rates over four orders of magnitude in density ratio
- Performed fractal analysis of mixing layer geometry
- Installed and performed initial Raman measurements of species distributions.

OUT.

Public

Please

info?


- Air Force Research Laboratory AFRL

Evolution of Mixing Layers in Transition from a Subcritical to a Supercritical State

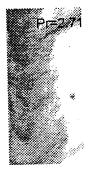
Acknowledgements:
Bruce Chehroudi
Rich Cohn
Roger Woodward
Ed Coy

N₂ into N₂

Back-illuminated images. Chamber is at a fixed supercritical temperature of 300 K but varying sub- to supercritical pressures (P_{critical} = 3.39 MPa). Re = 25,000 to 75,000. Injection velocity: 10-15 m/s. Froud number = 40,000 to 110,000. Injectant temperature = 99 to 120 K. Reduced pressures are



PRESSURE DEPENDENT MIXING LAYER STRUCTURE


Nitrogen/nitrogen system ($P_{cr} = 3.39 \text{ MPa}$, $T_{cr} = 126 \text{ K}$) T_{inj} = 128 K, T_{amb} = 300 K, mass flow = 350 mg/s

Low Pres. Subcritical Droplets

Mod. Pres. Supercritical Ligaments

High Pres. Supercritical Gas layers

Air Force Research Laboratory -

Sub- and Super-critical Mixing Layer Physics Chehroudi et. al., AIAA 99-0206, AIAA 99-2489

- N2 Jet Into N2 Darkcore (*)
- Steady Diesei-Type Spray L/D=4 ---- Steady Diesei-Type Spray L/D=85
- N2 jet into N2 L/D=200 (*)

- ◆ Cold He jet into N2; L/D=200 (*)
- Cold N2 jet into He; L/D=200 (*)

- Δ O2 jet into N2; L/D=200 (*)
- O2 jet into N2; Darkcore (*)

- Theory (Papamoschou&Roshko)
 - 1.00 Spray Gas/gas regime Transition 0.10 (θ Supercritical Subcritical 0.01 10.00 1.00 0.01 Chamber/Injectant Density Ratio

- Air Force Research Laboratory AFRL

Characteristic Times

- Characteristic bulge formation time (τ_b) at the jet interface (Tseng et al.): $(\rho_l L^3/\sigma)^{1/2}$; ρ_l , L, σ are liquid density, characteristic dimension of turbulent eddy, and surface tension, respectively.
- Characteristic time for gasification (τ_g) (D-square law): D²/K; D and K are drop diameter and vaporization constant.
- A Hypothesis: If these two characteristic times (calculated for appropriate length scales) are comparable then an interface bulge may not be separated as an unattached entity (onset of the gas-jet behavior at supercritical condition)

- Theoretical isothermal liquid spray growth rate (θ_s) based on Orr-Sommerfeld equation and stability analysis to find the wavelength of the most unstable interface wave: $\theta_s \cong 0.27 \left[O + (\rho_s/\rho_s)^{0.5} \right]$
- Papamoschou/Rashko theory for incompressible variable-density gaseous mixing layer/jet: $\theta_{P/R} \cong 0.17 \left[1 + (\rho_g/\rho_l)^{0.5}\right]$
- Dimotakis theory for incompressible variable-density gaseous mixing layer/jet: $\theta_{\text{D}} \cong 0.212 \left[0.59 + (\rho_{\text{a}}/\rho_{\text{l}})^{0.5}\right]$
- ALL HAVE THE SQUARE ROOT OF DENSITY RATIO AND THE SAME EQUATION FORMAT

- Air Force Research Laboratory|AFRL

Correlation

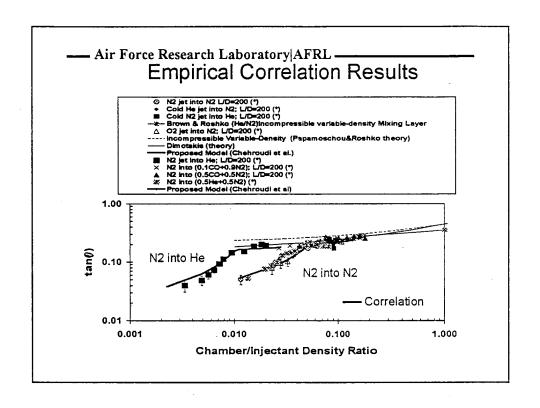
 Based of the information of the previous slide the following "intuitive/smart" equation is proposed for both sub- and supercritical measured growth rates:

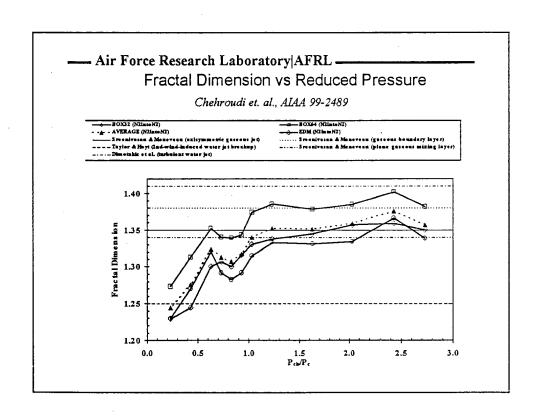
$$\theta_{Ch} \cong O.27 \left[\left(\tau_b / (\tau_b + \tau_g) \right) + (\rho_g / \rho_1)^{O.5} \right]$$

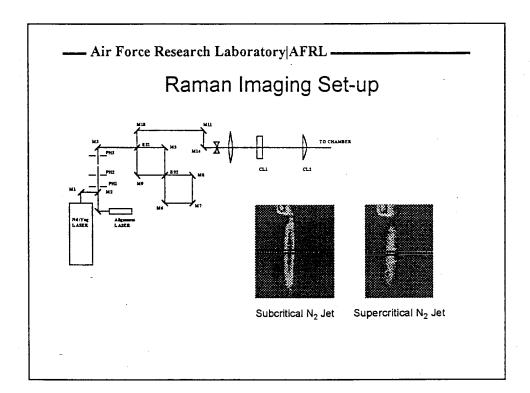
Note:

- For isothermal liquid case: $\tau_g >> \tau_b$ and $\tau_g \to \infty$. It then collapses to the isothermal spray case.
- For subcritical the $(\tau_b/(\tau_b+\tau_g))$ is calculated until it reaches 0.5. After that it is maintained constant at 0.5 for supercritical gas-like jet. The transition point is found to be approximately when $(\tau_b/(\tau_b+\tau_g))\cong 0.5$ (i.e. $\tau_b\cong \tau_g$).

Air Force Research Laboratory AFRL -

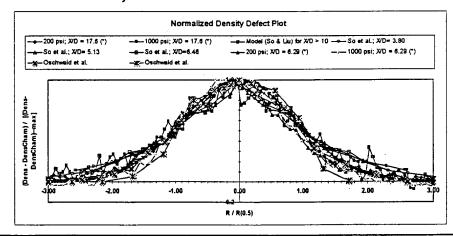

Correlation (con't)


- $(\tau_b/(\tau_b + \tau_a))$ is assumed to be a dominant function of the density ratio (ρ_a/ρ_l) ; i.e. $\tau_b/(\tau_b + \tau_a)) = F(\rho_g/\rho_l)$.
- The function F is only calculated for the N2-into-N2 case and is taken to be the same for other (N_2 -into-He ans N_2 -into-Ar) cases. That is, for example, for N_2 -into-He:


$$\theta_{Ch} {\cong 0.27} \; [\; G(\rho_g/\rho_l) + (\rho_g/\rho_l)^{0.5}] \; \; \text{where} \quad G(\rho_R) = F(\rho_R) \; . \label{eq:theta_chi}$$

$$\rho_R = (\rho_g/\rho_l)$$
; $\rho_R' = \rho_R - (1-X)\rho_R = X\rho_R$

X=1.0 for N_2 -into- N_2 ; X=0.2 for N_2 -into-He; X=1.2 for N_2 -into-Ar.



- Air Force Research Laboratory|AFRL -

Preliminary Raman Results

- Plot contains a theoretical model, supercritical jets from AFRL and DLR, and gas jets
- Self-similarity behavior is observed

— Air Force Research Laboratory|AFRL -

Planned for FY00

- Complete Raman species measurements; reduce and analyze data.
- Install acoustic drivers and investigate the effect of acoustic waves.

— Air Force Research Laboratory AFRL —

Summary and Conclusions

- Structural differences in cryogenic jets have been observed below and above the thermodynamic critical point.
- Liquid-Jet like appearance occurs up to near the critical point, similar to second wind-induced liquid jet breakup regime.
- Gas-jet like appearance occurs above the critical point. No drops are observed.
 - Supercritical spreading rate measurements agree quantitatively with incompressible variable density mixing layer experiments and theory.
 - Supercritical fractal dimensions agree quantitatively with gas jet measurements.
- New and existing mixing layer growth rate experiments and theory have for the first time been consolidated into a single plot as a function of density ratio, where the density ratio spans three orders of magnitude.
- A physical mechanism and correlation have been proposed to describe the transition from spray to gas jet behavior.

— Air Force Research Laboratory AFRL

Summary and Conclusions (con't)

 Preliminary analysis of Raman data indicates selfsimilar spreading behavior much like a gas jet.